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Abstract 21 

Wildfires are increasingly impacting social and environmental systems in the United States. 22 

The ability to mitigate the adverse effects of wildfires increases with understanding of the 23 

social, physical, and biological conditions that co-occurred with or caused the wildfire 24 

ignitions and contributed to the wildfire impacts. To this end, we developed the FPA FOD-25 

Attributes dataset, which augments the sixth version of the Fire Program Analysis-Fire 26 

Occurrence Database (FPA FOD v6) with nearly 270 attributes that coincide with the date 27 

and location of each wildfire ignition in the United States. FPA FOD v6 contains information 28 

on location, jurisdiction, discovery time, cause, and final size of >2.3 million wildfires from 29 

1992-2020 in the United States. For each wildfire, we added physical (e.g., weather, climate, 30 

topography, infrastructure), biological (e.g., land cover, normalized difference vegetation 31 

index), social (e.g., population density, social vulnerability index), and administrative (e.g., 32 

national and regional preparedness level, jurisdiction) attributes. This publicly available 33 

dataset can be used to answer numerous questions about the covariates associated with 34 

human- and lightning-caused wildfires. Furthermore, the FPA FOD-Attributes dataset can 35 

support descriptive, diagnostic, predictive, and prescriptive wildfire analytics, including 36 

development of machine learning models. The FPA FOD-Attributes dataset is available at 37 

https://zenodo.org/record/8381129 (Pourmohamad et al. 2023). 38 

 39 
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 40 

1. Introduction 41 

Wildfire (hereafter, fire) hazards have increased across many regions of the world in recent 42 

decades, increasing the burden on fire prevention and suppression efforts (Alizadeh et al., 43 

2021; Modaresi Rad et al., 2023; Rad et al., 2023). Changes in climate have decreased the 44 

moisture content of living and dead vegetation, lengthened the fire season, and contributed to 45 

a significant increase in the number of critical fire danger days across much of the United 46 

States (Westerling, 2016; Dennison et al., 2014; Bowman et al., 2011). These changes have 47 

overlapped with the impacts of fire suppression policies, fire deficits, and high fuel loads in 48 

many regions, especially low-elevation forests in the western United States (Bowman et al., 49 

2009). Human-caused ignitions compound the fire burden, particularly near the wildland-50 

urban interface (WUI), where wildlands intermingle with human settlements (Stephens et al., 51 

2013; Committee, 2013). Moreover, increases in the area and density of human settlement 52 

and infrastructure in the WUI have further increased exposure to fire hazards across the 53 

United States (Scott et al., 2012). The intersection of changes in the number and timing of 54 

ignitions and changing environmental conditions has resulted in several fires that caused 55 

substantial loss of life (e.g., Miller and Ager, 2012). 56 

Studies have focused on understanding the patterns and drivers of human-caused ignitions 57 

given the potential for reducing the number of such ignitions and the negative impacts 58 

associated with the resulting fires, particularly near the WUI (Short, 2014; Balch et al., 2017). 59 

The primary factors that are often included in models of human-caused ignitions are social 60 

and economic (e.g., demographics), environmental (e.g., vegetation, meteorology, 61 

topography), anthropogenic (e.g., land ownership, distance to roads), and timing metrics (e.g., 62 

holidays, weekends) (Short, 2022). Similarly, advances in predictive understanding of 63 

lightning-ignited fires have improved the speed and effectiveness of suppression responses 64 

(Ronchi et al., 2017; McGee et al., 2015). Soil moisture (Viegas et al., 1992; Meisner et al., 65 

1993; Pineda et al., 2022), vegetation type and condition (Dissing and Verbyla, 2003; 66 

Wierzchowski et al., 2002), weather (Wierzchowski et al., 2002; Hély et al., 2001), pre-fire-67 

season snowpack (Chen and Jin, 2022), duration of lightning contact with fuel (Fuquay et. al., 68 

1979; Latham and Williams, 2001), number of lightning strikes (Flannigan and Wotton, 69 

1991), and topography (Hessilt et al., 2022) are the main cited factors that affect natural fires. 70 

However, the confluence of factors that shape spatial and temporal patterns of ignitions, 71 

especially human-caused ignitions, confounds efforts to predict, prevent, and prepare for the 72 

impacts of fires. 73 

The most comprehensive source of georeferenced fire ignition data in the United States is the 74 

Fire Program Analysis Fire Occurrence Database (Short, 2014), which aggregates fire reports 75 

from federal, state, and local entities with fire protection and reporting responsibilities. All 76 

fires in the FPA FOD database are referenced to a discovery date, final fire size (area within 77 

the fire perimeter), and a point location at least as precise as a Public Land Survey System 78 

section (i.e., 1 square mile grid). Most fire records are also associated with attributes 79 
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including fire name, discovery time, reporting agency information, ignition cause, and 80 

containment date and time. The 13 cause classes, as determined by the reporting agency, are 81 

natural; recreation and ceremony; equipment and vehicle use; debris and open burning; 82 

smoking, arson or incendiarism; railroad operations and maintenance; misuse of fire by a 83 

minor; power generation, transmission, or distribution; fireworks, firearms and explosives 84 

use; other causes; and missing data, not specified, or undetermined (Short, 2021). FPA FOD 85 

also includes incident identification numbers that can be referenced to other fire databases, 86 

such as Monitoring Trends in Burn Severity (Eidenshink et al., 2007) and All-hazards dataset 87 

(St. Denis et al., 2023). The sixth version of FPA FOD includes more than 2.3 million fire 88 

records that correspond to a total of more than 72.8 million ha (180 million acres) burned 89 

from 1992-2020 across the United States (Short, 2022). 90 

To enable stronger inferences about factors that affect and predict fire ignitions and 91 

outcomes, we augmented the sixth version of FPA FOD (FPA FOD v6) with 267 attributes 92 

associated with the date and location of ignition across the United States. Major classes of 93 

these attributes encompass climate, weather and fire danger, topography, land cover and 94 

vegetation, jurisdiction and management, infrastructure, and social context. Although the 95 

attributes are associated with the date and point of ignition, we also included summary 96 

statistics within a temporal buffer (e.g., 5 days centered on the ignition date) and a spatial 97 

buffer (e.g., 1 km) around the ignition point. Additionally, we included monthly, satellite-98 

derived vegetation indices during the 12 months prior to the ignition. The resultant FPA 99 

FOD-Attributes dataset includes a total of 310 attributes associated with more than 2.3 100 

million fire incidents across the United States from 1992-2020. This rich, tabular dataset can 101 

be used in a variety of hypothesis-driven or data-exploration applications. 102 

2. Methods 103 

2.1. Data Sources 104 

The FPA FOD-Attributes dataset brings together 267 attributes associated with fire ignitions 105 

from 24 data sources (Tables 1 and S1). The accuracy, precision, and uncertainty of each 106 

attribute, including spatial and temporal resolution, depends on the source data. Availability 107 

of attributes for individual fire incidents also depends on the spatial and temporal coverage of 108 

the source data. Table 1 lists general categories of attributes, their resolution and coverage, 109 

and their sources. Table S1 lists more detail about individual attributes that are included in 110 

the FPA FOD-Attributes dataset. 111 

Source data were either in raster or vector/point formats. For raster data, we selected the 112 

attribute value of the grid cell that contained the ignition point recorded in the FPA FOD 113 

dataset. Similarly, for vector/shapefile formatted data, we selected the attribute value of the 114 

area associated with the ignition point. When distance from the fire location to a vector was 115 

of interest, we estimated the nearest perpendicular distance. We conducted all analyses with 116 

Python libraries xarray and GDAL (raster data) or GeoPandas (vector data). Source code is 117 

provided along with the FPA FOD-Attributes dataset to support future use (see Code 118 

Availability and Data Availability sections). 119 
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Table 1. Variables in the FPA FOD-Attributes dataset and their data sources. See Table S1 120 

for a detailed description of all variables and sources. 121 

 Variable category 
Spatial 

resolution 

Temporal 

resolution 
Temporal extent Spatial extent Source 

W
ea

th
er

 a
n

d
 c

li
m

at
e Weather and fire 

danger 
~4 km Daily 1979-present CONUS 

gridMET 

(Abatzoglou, 2013) 

Climate normal  ~4 km Daily 1990-2020 CONUS gridMET 

Climate percentiles  ~4 km Daily 1990-2020 CONUS gridMET 

L
an

d
 c

o
v

er
 a

n
d

 t
o
p

o
g

ra
p

h
y

 

Omernik ecoregions 

level II and III 
Vector Static NA* North America EPA* 

Pyrome  Vector Static NA CONUS Short, 2022 

Topography 30 m Static NA U.S. USGS et al., 2023 

Existing vegetation 30 m Periodic 
2001, 2012, 

2014, 2016, 2020 
U.S. USGS et al., 2023 

Fire regime group type 30 m Periodic 
2001, 2012, 

2014, 2016, 2020 
U.S. USGS et al., 2023 

Normalized Difference 

Vegetation Index 

(NDVI)  

5.60 km 16 days 2000-present Global Didan, 2021 

NDVI  5.55 km Daily 1981-present Global Vermote, 2019 

Land cover  33.3 m Periodic 

1992, 2001, 

2004, 2006, 

2008, 2011, 

2013, 2016, and 

2019 

U.S. Dewitz, 2019 

Rangeland production  30 m Annual 1984-2021 
Rangelands 

across CONUS 

Reeves and Frid, 

2016 

Exotic annual and 

native perennial grasses 
30 m Annual 2016-2021 

Extended 

Western U.S. 
USGS, 2023 

S
o

ci
al

 

Climate and economic 

justice screening tool  

Census 

tract 
Static 2010 U.S. 

Climate and 

Economic Justice 

Screening Tool, 

2023 

Social vulnerability 

index 

Census 

tract 
Periodic 

2000, 2010, 

2014, 2016, 

2018, and 2020 

U.S. Flanagan et al., 2018 

Population density 100 m Annual 2000-present Global WorldPop, 2018 

Gross domestic product  9.3 km Periodic 1990, 2000, 2015 Global Kummu et al., 2018 

Global human 

modification  
1 km Static NA Global Kennedy et al., 2019 

A
d

m
in

is
tr

at
iv

e 

Risk management 

assistance  
30 m Static NA CONUS Silva et al., 2020 

Fire Stations Point Static NA U.S. Fire Stations, 2023 

 GACC preparedness 

level 
GACC Daily 2007-2021 U.S. Nguyan et al., 2023 

National preparedness 

level 
National Daily 1990-present U.S. 

Wildland fire 

perimeters full 

history, 2023 

Conservation status Vector Static NA U.S. USGS, 2022 

Distance to road  Vector Static NA U.S. 
TIGER: US Census 

Roads 
 122 
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*EPA: U.S. Environmental Protection Agency – MODIS: Moderate Resolution Imaging 123 

Spectroradiometer – USGS: U.S. Geological Survey – NASA: National Aeronautics and 124 

Space Administration – NOAA: National Oceanic and Atmospheric Administration  – 125 

NLCD: National Land Cover Dataset – CDC: Centers for Disease Control and Prevention – 126 

GACC: Geographic Area Coordination Center – NIFC: National Interagency Fire Center – 127 

SEDAC: Socioeconomic Data and Applications Center – TIGER: Topologically Integrated 128 

Geographic Encoding and Referencing – NA: Not Applicable 129 

2.2. Data Compilation 130 

Here, we briefly discuss the data compilation process and assumptions. Table S1 provides a 131 

detailed description of the variables, their units, and sources. Unless otherwise specified, the 132 

FPA FOD-Attributes dataset provides a complete record of values of each variable for all fire 133 

events from 1992-2020. 134 

2.2.1. Weather and climate 135 

Our main source of weather and climate data was gridMET (Abatzoglou, 2013), which 136 

merged gridded climate and reanalysis data with gauge-based precipitation data to provide 137 

spatially and temporally complete, high-resolution (4 km) gridded data on surface 138 

meteorological variables. gridMET also provides daily fire danger indices based on Fuel 139 

Model G from the National Fire Danger Rating System 77 (Cohen and Deeming, 1985). 140 

gridMET is widely used in fire-related studies (Alizadeh et al., 2021, 2023). 141 

● Weather and fire danger indices 142 

Attributes associated with each fire ignition in the FPA FOD-Attributes dataset include daily 143 

precipitation, maximum and minimum temperature (2 m above ground), relative humidity, 144 

specific humidity, wind velocity (10 m above ground), surface downward shortwave 145 

radiation, reference evapotranspiration, and vapor pressure deficit; all data are for the date 146 

and point of fire ignition. We also derived the following fire danger indices for the date and 147 

point of fire ignition: 100-hour and 1000-hour dead fuel moisture, energy release component 148 

(ERC), and burning index. Additionally, we derived maximum, minimum, and average 149 

values of these variables within a 5-day window centered on the fire ignition date (i.e., from 2 150 

days prior to 2 days after the ignition date). 151 

● Climate normals  152 

A climate normal is defined as the long-term (1990-2020) average of daily surface 153 

meteorological variables. Climate normals characterize average weather conditions. The 154 

attributes include climate normals of all meteorological and fire danger indices listed above 155 

for the location and day of year of fire ignition. 156 

● Climate percentiles  157 
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We calculated the percentile range for meteorological and fire danger indices for the location 158 

and the day of year of fire ignition, relative to values from the same day of the year from 159 

1979-2020. The percentile range enables the user to compare the attribute with long-term 160 

records. We report the data in discrete ranges of <10%, 10%-30%, 30%-50%, 50%-70%, 161 

70%-90%, and >90%. Depending on the attribute, a higher percentile range might be 162 

associated with higher (e.g., ERC) or lower (e.g., 1000-hr dead fuel moisture) fire danger. 163 

2.2.2. Land cover and topography 164 

We used data from the U.S. Forest Service (USFS), U.S. Geological Survey (USGS), 165 

LANDFIRE, National Oceanic and Atmospheric Administration (NOAA), National 166 

Aeronautics and Space Administration (NASA), and U.S. Environmental Protection Agency 167 

(EPA) to derive attributes associated with land surface conditions at the location and time of 168 

fire ignition. We provide multiple land-cover data sources to allow users to select the source 169 

that best suits their needs. 170 

Given the potential biases in reporting of the ignition location, statistics of variables within a 171 

1-km radius around the ignition location, especially variables derived from 30-m or other 172 

fine-resolution products, are likely a more accurate representation of the ground conditions 173 

than values specifically at the point of ignition. For fires that burn large areas, note that land 174 

cover can vary widely and thus may differ from that at the point of ignition, 175 

● Omernik ecoregions 176 

Ecoregions denote areas with similar biotic and abiotic attributes (Omernik, 1987). Ecoregion 177 

shapefiles (i.e., vector data) are available at four levels: 15 Level 1 ecoregions, 50 Level 2 178 

ecoregions, and 182 Level 3 ecoregions across North America, and 967 Level 4 ecoregions in 179 

the CONUS. Many fire-related studies used Level II or III ecoregions (Dennison et al., 2014; 180 

Alizadeh et al., 2021, 2023), and we provide these two ecoregion classifications at the 181 

ignition point of each fire. 182 

● Pyrome  183 

Pyromes are regions with relatively homogeneous contemporary fire regimes (e.g., start and 184 

end date of fire season, frequency of fire, modality and large-fire size); 128 pyromes have 185 

been identified in CONUS (Short et al., 2020). We provide the pyrome associated with the 186 

ignition point of each fire. 187 

● Topography 188 

Topography affects the likelihood of fire ignition and fire behavior. We derived elevation, 189 

slope, aspect, the Topographic Position Index (TPI), and Terrain Ruggedness Index (TRI). 190 

Positive and negative TPI values represent locations that are higher and lower, respectively, 191 

than their neighboring grid cells (Weiss, 2001). TRI indicates the magnitude of elevation 192 

change between neighboring grid cells (Riley et al., 1999). We derived elevation (above 193 

mean sea level), slope, and aspect from LANDFIRE products (30-m resolution). We derived 194 

TPI and TRI from the LANDFIRE digital elevation model with the GDAL library in Python. 195 
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The FPA FOD-Attributes dataset includes these variables at the fire ignition point, and also 196 

averaged across a 1-km radius around the fire ignition point. 197 

● Existing vegetation 198 

We used Existing Vegetation Cover (EVC), Existing Vegetation Height (EVH), and Existing 199 

Vegetation Type (EVT) data from LANDFIRE (30-m resolution) to represent vegetation as 200 

close as possible to the point and date of fire ignition. EVC, EVH, and EVT are available for 201 

2001, 2012, 2014, 2016 and 2020. For each fire ignition, we used the most recent prior data 202 

product. For all fires prior to 2001, we used the 2001 product. We used the codes for 203 

vegetation variables as in the original dataset (https://landfire.gov/vegetation.php). We also 204 

report the most frequently occurring EVC, EVH, and EVT classification within a 1-km radius 205 

around each fire ignition point. 206 

● Fire regime group  207 

Fire regime group (FRG) characterizes the presumed historical fire regime in a given 208 

location. We report the most frequently occurring FRG within the 1-km radius around each 209 

ignition point, for the prior year closest to the date of ignition. Data on FRG are available 210 

through LANDFIRE for 2001, 2012, 2014, and 2016. We used the 2001 product for all 211 

ignitions prior to 2001. FRG codes in FPA FOD-Attributes correspond to those in 212 

LANDFIRE (https://landfire.gov/CSV/FRG.csv). 213 

● Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index 214 

(EVI) from NASA’s MODIS sensor 215 

NDVI is an index of vegetation greenness (Rouse et al., 1974) that is closely related to 216 

primary productivity and leaf cover. EVI is a similar index that generally is more accurate in 217 

regions with high vegetation biomass (Huete et al., 2002). We obtained NDVI and EVI from 218 

NASA’s MOD13C2 v6.1 product (5.6 km resolution), which provides monthly NDVI and 219 

EVI indices from 2000 to present. We derived NDVI and EVI at the point of ignition in the 220 

month prior to the ignition date and the 11 previous months. The FPA FOD-Attributes dataset 221 

does not include NDVI and EVI values for ignitions prior to 2000. 222 

● NDVI from NOAA 223 

We also obtained NDVI from NOAA’s daily gridded NDVI product (5.55 km resolution), 224 

which was derived from the Surface Reflectance Climate Data Record based on Advanced 225 

Very High Resolution Radiometer (AVHRR) and Visible Infrared Imaging Radiometer Suite 226 

(VIIRS) images (Vermote, 2019). We acquired the NDVI value associated with the location 227 

of ignition on the day prior to the fire discovery date. FPA FOD-Attributes also includes 228 

monthly mean, maximum, and minimum NDVI for the 12 months prior to the ignition date. 229 

● Land cover 230 

We used the National Land Cover Database (NLCD) to derive the most recent prior land-231 

cover type associated with each point and date of fire ignition. These data are similar to EVC, 232 
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and users may opt to select one or the other. NLCD data are available for 1992, 2001, 2004, 233 

2006, 2008, 2011, 2013, 2016, and 2019. Land cover classes and the method used to classify 234 

land cover from Landsat images differed between 1992 and all other years (Dewitz, 2019). 235 

The attributes include land-cover type at the point of ignition and the three land-cover types 236 

with the greatest percentage of cover within a 1-km radius around the ignition point. 237 

● Rangeland production 238 

The rangeland production metric quantifies annual plant biomass production on 268 million 239 

hectares (662 million acres) of rangeland across the CONUS from 1984 to present at 30 m 240 

resolution. We derived rangeland production values at the ignition point and within a 1-km 241 

radius around the ignition point for the year of fire. Values of rangeland production are only 242 

provided for ignitions within the domain of the Rangeland Production Monitoring Service 243 

(Reeves et al., 2021). 244 

● Exotic annual and native perennial grasses 245 

We used annual fractional cover maps (30-m resolution) for (1) a group of 17 exotic annual 246 

grasses, (2) cheatgrass (Bromus tectorum), (3) medusahead (Taeniatherum caput-medusae), 247 

and (4) Sandberg bluegrass (Poa secunda) from 2016-2021 (USGS, 2023). These data are 248 

generated from on-the-ground observations by the U.S. Bureau of Land Management and 249 

application of a machine learning model to Harmonized Landsat and Sentinel images (Dahal 250 

et al., 2022). The FPA FOD-Attributes dataset provides percent cover for each of the four 251 

above-mentioned categories of grasses on the date and for the location of ignition from 2016-252 

2020, within the spatial domain of the source data (extended western United States). 253 

2.2.3. Social and economic context 254 

We used a variety of government and academic data sources to derive social and economic 255 

attributes associated with the location of fire ignitions. Many of these sources are based on 256 

the United States or, in some cases, global census data. 257 

● Climate and economic justice screening tool 258 

We used the U.S. Council on Environmental Quality’s Climate and Economic Justice 259 

Screening Tool (CEJST) v.0 to derive metrics associated with community-level burdens 260 

related to climate change, energy, health, housing, legacy pollution, transportation, water and 261 

wastewater, and workforce development. Because values of CEJST’s 107 variables currently 262 

are static, we assigned values to all fire ignitions in the entire period of record on the basis of 263 

location. CEJST is derived from 2010 U.S. census data and values of variables are available 264 

at the tract level. CEJST classifies a community as disadvantaged if it is “(1) at or above the 265 

threshold for one or more environmental, climate, or other burdens, and (2) at or above the 266 

threshold for an associated socioeconomic burden” (https://screeningtool.geoplatform.gov/).  267 

● Social vulnerability index 268 
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We used the U.S. Centers for Disease Control and Prevention’s nested hierarchical social 269 

vulnerability index (SVI), which provides a measure of vulnerability for each census tract in 270 

terms of overall vulnerability, four general dimensions of vulnerability (socioeconomic 271 

status, household composition and disability, housing type and transportation, minority status 272 

and language), and 15 subdimensions of vulnerability (e.g., income, age, minority, no 273 

vehicles). Values of the SVI range from 0 (low vulnerability) to 1 (high vulnerability). SVI 274 

estimates are available for 2000, 2010, 2014, 2016, 2018, and 2020. The FPA FOD-275 

Attributes dataset includes the overall SVI value and values of the dimensions and 276 

subdimensions of vulnerability for the location and year of each fire ignition. We used the 277 

most recent SVI prior to the ignition date. We assigned vulnerability attributes to ignitions 278 

prior to 2000 from the 2000 SVI data. 279 

● Population density 280 

We obtained population density and its average within a 1-km radius around the point of 281 

ignition from the WorldPop dataset (Tatem, 2017), which provides annual global population 282 

data from 2000-present at 100-m resolution. We did not assign a population density value to 283 

fire ignitions prior to 2000. 284 

● Gross domestic product  285 

We derived per capita gross domestic product (GDP) at the location of each ignition in the 286 

most recent year prior to the ignition date. Our global data source (Kummu et al., 2018) 287 

provides subnational GDP per capita for 1990, 2000, 2015 at 5 arc-min resolution. 288 

● Global human modification  289 

We assigned a static global human modification (GHM) index, which indicates the 290 

cumulative human modification of lands, to each fire ignition on the basis of its location. We 291 

derived GHM values from data provided by the NASA Socioeconomic Data and Applications 292 

Center (1-km resolution at the global level), which were originally developed by (Kennedy et 293 

al., 2019). 294 

2.2.4. Administrative 295 

We used a variety of data sources, mostly from the U.S. government, to acquire attributes 296 

associated with management. 297 

● Risk management assistance program 298 

We used the two static, raster-formatted risk maps provided by the Risk Management 299 

Assistance program to acquire evacuation time from the fire ignition location to a medical 300 

care facility and the suppression difficulty index (SDI; Silva et al., 2020) for the fire ignition 301 

point. SDI is a measure of relative difficulty of fire control given topography, fuels, expected 302 

severe weather fire behavior, firefighter line production rates in various vegetation types, and 303 

accessibility (e.g., distance from roads or trails). 304 

● Fire stations 305 
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We derived the number of fire stations within a 1-, 5-, 10-, and 20-km radius around each fire 306 

ignition point. The location of fire stations comes from the static Homeland Infrastructure 307 

Foundation-Level Data. 308 

● Geographic area coordination centers (GACC) preparedness level 309 

The nine GACCs in CONUS also have preparedness levels that are based on the regional 310 

availability of wildland firefighting resources and fire activity. We obtained the GACC 311 

preparedness level for all fire ignitions over the period 2007-2020 (Nguyan et al., 2023). Data 312 

are not available for fire ignitions prior to 2007. 313 

● National preparedness level (NPL) 314 

National preparedness level indicates suppression resource availability for emerging fires on 315 

the basis of fuel and weather conditions, current fire activity, and resource commitments; 316 

there is a single NPL reflecting the entire nation. We acquired the NPL associated with the 317 

date of all fire ignitions from the National Interagency Fire Center (NIFC). NPLs are 318 

determined by the National Multiagency Coordination Group or the National Interagency 319 

Coordination Center (NICC) daily during the fire season and are published by NICC as a part 320 

of the daily Incident Management Situation Report (IMSR; Nguyan et al., 2023). 321 

● Conservation status 322 

The Gap Analysis Project (GAP) is a USGS-based program that evaluates whether common 323 

species of plants and animals are adequately protected and tracks the conservation status of 324 

lands and waters nationwide. From GAP’s vector-based static data, we obtained management 325 

jurisdiction and agency (e.g., U.S. Fish and Wildlife Service), land management designation 326 

(e.g., Wilderness Area, National Recreation Area), and GAP status code and priority (extent 327 

to which conservation of biological diversity is prioritized) for all fire ignition points. 328 

● Distance to road 329 

We used the vector-based, static Topologically Integrated Geographic Encoding and 330 

Referencing (TIGER) database to derive the minimum distance (perpendicular) from the 331 

point of fire ignition to primary, secondary, local, and other roads and to all-terrain vehicle 332 

and non-motorized vehicle trails. 333 

3. Data validation 334 

The FPA FOD-Attributes dataset is a derivative dataset, and hence the accuracy, precision 335 

and uncertainty of the fire attributes reflect those of the source data. We selected reliable 336 

source data to ensure the quality of attribute data associated with each fire. Our validation 337 

process was focused on ensuring the attributes are consistent with the source. We followed 338 

four steps to validate our data: 339 

1. Manual comparison of attribute values for selected fires from the source data to those 340 

in the FPA FOD-Attributes dataset. 341 
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2. Comparison of the attributes in the FPA FOD-Attributes dataset and another 342 

published study. 343 

3. Investigation of the temporal evolution of attributes associated with selected fires and 344 

those in the FPA FOD-Attributes dataset. 345 

4. Comparison of attributes from the FPA FOD-Attributes dataset with those reported by 346 

the news media. 347 

3.1. Manual comparison 348 

We compared values of attributes of 100 randomly selected fires that spanned the spatial and 349 

temporal domain from the FPA FOD-Attributes dataset and manually extracted source data in 350 

QGIS (raster and vector-based data) or Excel (tabular data). We assumed that manual 351 

comparison would detect any systematic errors in the Python code used to develop the FPA 352 

FOD-Attributes dataset. All attribute values for all selected fire ignitions matched those of the 353 

source data. 354 

3.2. Comparison with the literature 355 

We compared the meteorological and fire danger indices associated with seven fires in 356 

Southern California listed in Table S6 of (Khorshidi et al., 2020) with those in the FPA FOD-357 

Attributes dataset. Because (Khorshidi et al., 2020) also used gridMET, we expected the two 358 

sets of values to match. With the exception of rounding errors, values of vapor pressure 359 

deficit (VPD), 100-hr and 1000-hr dead fuel moisture (FM100 and FM1000, respectively), 360 

and burning index (BI) from the two sources matched (Figure 1, Table S2). 361 
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 362 

Figure 1. Comparison of values of meteorological and fire danger indices associated with 363 

seven fires from FPA FOD-Attributes and (Khorshidi et al., 2020). 364 

 365 

3.3. Temporal evolution of fire attributes 366 

We analyzed the temporal evolution of meteorological and fire danger indices at the point of 367 

ignition between the fire discovery and containment dates of seven high-impact fires (Table 368 

S3, Figure 2, Figures S1-S6) distributed across CONUS. The FPA FOD-Attributes dataset 369 

provides these attributes on the ignition date and in a 5-day window centered around the 370 

ignition data. Here, we present the results for the Camp Fire, which started on November 8, 371 

2018, near Paradise, California. This fire claimed 85 lives and destroyed more than 18,000 372 

structures. Camp fire was ignited by power transmission lines in the coniferous forests of 373 
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Butte County, California, and spread quickly due to strong easterly downslope winds. The 374 

FPA FOD-Attributes dataset indicates that the fire was ignited in an evergreen forest (NLCD 375 

classification) and that the land cover within a 1-km radius was 50% evergreen forest, 41% 376 

shrub/scrub, and 6% “developed, open space”. The three most prevalent existing vegetation 377 

heights within a 1-km radius of the ignition point were 18 m (trees; 43%), 38 m (trees; 23%), 378 

and 0.8 m (herbaceous plants; 9% herb). These data match the official reports and news 379 

accounts of the fire (e.g., Maranghides et al., 2021, and references therein). The elevation of 380 

the fire ignition in the FPA FOD-Attributes dataset, 608 m, is consistent with the downslope 381 

spread of the fire from the ignition point to the city of Paradise (elevation 542 m). 382 

We extracted wind velocity (VS), VPD, FM100, FM1000, energy release component (ERC), 383 

and BI from late October to early December 2018 at the ignition point of the Camp Fire from 384 

gridMET and the FPA FOD-Attributes dataset. Values of the two sets of variables matched 385 

(Figure 2). Furthermore, the evolution of meteorological and fire danger variables followed 386 

the known pattern: the Camp Fire started on a windy day (Figures 2a,f) concurrent with dry 387 

vegetation (Figures 2b-e), and it was contained by the first rainstorm of the water year on 388 

November 25. The arrival of the storm decreased fire danger and increased fuel moisture 389 

(Figures 2b-f). 390 

 391 
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 392 

Figure 2. Evolution of meteorological and fire danger indices from late October to early 393 

December 2018 at the ignition point of the Camp Fire. Fire discovery and containment dates 394 

are indicated with vertical orange lines, the attribute value at the date of ignition is indicated 395 

with red asterisks, and the attributes’ five-day average and maximum (VS, VPD, ERC, BI) or 396 

minimum (FM100, FM1000) values are indicated with green and red horizontal lines. 397 

 398 
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Figures S1-S6 show the evolution of meteorological and fire danger attributes associated with 399 

six additional fires across the CONUS, also providing evidence of the validity of the FPA 400 

FOD-Attributes dataset. 401 

3.4. Comparison with the news 402 

We also compared the fire attributes from the FPA FOD-Attributes dataset with news 403 

accounts of two major fires, the Martin and East Troublesome fires. The 2018 Martin fire 404 

burned more than 168,680 ha of shrublands and grasslands in Paradise Valley, Nevada. High 405 

winds and high cover of cheatgrass are believed to have contributed to the quick spread of 406 

this fire (Rothberg, 2018). The FPA FOD-Attributes dataset indicated that the prevalent land 407 

cover (derived from NLCD) in a 1-km radius around the ignition point was shrub/scrub or 408 

grassland/herbaceous; and that the majority of existing vegetation height (derived from 409 

LANDFIRE) was 0.3 m (herbaceous), 0.2 m (herbaceous), and 0.8 m (shrubs). Furthermore, 410 

land cover at the point of ignition included 21% cheatgrass and 27% other exotic annual 411 

grasses, and daily average wind speed was in the 70%-90% range of historical records for the 412 

day of the year, which is consistent with news reports (Rothberg, 2018). The FPA FOD-413 

Attributes dataset indicates an elevation of 1,415 m at the point of ignition, which is 414 

comparable to the Paradise Valley, Nevada, elevation of 1,389 m. 415 

The 2020 East Troublesome Fire burned 78,430 ha in the high elevations of the central Rocky 416 

Mountains of Colorado (above 2,740 m). Low relative humidity and high winds enabled the 417 

fire to spread rapidly through coniferous forest, kill two people, and destroy more than 400 418 

structures (Colorado Encyclopedia, 2023). The FPA FOD-Attributes dataset indicates that 419 

VPD and VS on the date of ignition were high relative to their historical range on the same 420 

day of the year (80%-90% and >90%, respectively), and that the fire ignited at an elevation of 421 

2,757 m. Land cover (derived from NLCD) within a 1-km radius around the ignition point 422 

included evergreen forest (61%), shrub/scrub (32%), and deciduous forest (6%). Cheatgrass 423 

is uncommon at such high elevations, and the FPA FOD-Attributes dataset did not assign any 424 

cheatgrass cover to the ignition point. These metrics are consistent with the news records. 425 

 426 

4. Results 427 

Decadal trends and interannual variability in the number of wildfires are apparent over the 428 

1992-2020 time period covered by the FPA FOD dataset. Human-caused fires increased, 429 

while lightning-ignited (hereafter “natural”) fires decreased (Figure 3). Interannual variability 430 

of fire ignitions is partially explained by seasonal climate and weather conditions, for 431 

example modulated through fuel receptiveness to ignitions and abundance of outdoor 432 

activities (Noonan-Wright et al., 2011; Finney et al., 2011). Decadal trends are mainly 433 

attributable to fire prevention strategies and climatic changes (e.g., increases in the number of 434 

critical fire danger days) (Noonan-Wright et al., 2011; Khorshidi et al., 2020; Alizadeh et al., 435 

2023). Importantly, fire ignitions have temporal and spatial structures, enabling development 436 

of targeted fire prevention and response strategies (Douglas et al., 2001). Figure 4, for 437 
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example, shows a clear spatial pattern in both human-caused and natural ignitions across the 438 

contiguous United States (CONUS). Human-caused fires are close to human settlements and 439 

roads (which can be partially explained by reporting biases; Figure 4a); whereas natural fires 440 

are associated with mountains in the western and southeastern CONUS (Figure 4b). Figures 441 

S7-S19 display the spatial distribution of ignitions associated with 13 specific fire causes 442 

(subcategories of natural and human-caused fires). 443 

 444 

 445 

Figure 3. Trends in the annual number of natural and human-caused fires in the contiguous 446 

United States from 1992-2020. 447 

 448 

 449 
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Figure 4. Spatial distribution of human-caused and natural fire ignitions in the contiguous 450 

United States from 1992-2020. Bars on the x- and y-axes are histograms of the longitudinal 451 

and latitudinal of ignitions, respectively. 452 

 453 

 454 
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We also visualized selected attributes associated with CONUS fires. Figure 5 shows the total 455 

number of fires from 1992-2020 in 0.5-degree grids across CONUS. We differentiated small 456 

fires (less than 4 ha) and large fires (greater than or equal to 4 ha). Eighty-nine percent of 457 

fires were smaller than 4 ha. Fifty-nine percent of all fires were smaller than 0.4 ha, and 97% 458 

were smaller than 40 ha, accounting for 0.08% and 2.28% of total burned area across 459 

CONUS, respectively. The number of small fires (< 4 ha) in the eastern United States and 460 

California was greater than that elsewhere in the western United States (Figure 5a). The 461 

number of fires larger than 4 ha, however, was markedly greater in the western United 462 

States, southern Great Plains, and Florida (Figure 5b). 463 

 464 

Figure 5. Number of fires (a) less than 4 ha (10 acres) and (b) greater than or equal to 4 ha 465 

in 0.5-degree grid cells. 466 

 467 
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Small fires were associated with an average population density (2.35 people/ha; Figure 468 

6a), an order of magnitude greater than that associated with large fires (0.24 people/ha; 469 

Figure 6b). Fires in California, the Front Range of Colorado, and Florida were associated 470 

with especially high population densities. In California, for example, small and large fires 471 

were associated with population densities of 3.88 and 1.04 people/ha, respectively. 472 

Furthermore, the population density associated with human-caused fires was more than 473 

four times greater than that associated with natural fires (2.03 and 0.47 people/ha, 474 

respectively).  475 

Consistent with topography across CONUS, the average elevation of fires west of -102 476 

degrees longitude was 2,146 m, compared to 1,194 m to the east. The average elevations 477 

of the ignition points of natural fires were markedly higher (1,863 m) than those of 478 

human-caused fires (571 m). 479 

 480 
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Figure 6. Average population density (people/ha) associated with fires that burned less 481 

than 4 ha (a) and more than or equal to 4 ha (b) in each 0.5-degree grid cell. 482 

 483 

Values of several attributes of fires varied along a longitudinal gradient across CONUS 484 

(Figures 7-8). For example, ERC and minimum distance to the nearest road were markedly 485 

greater in the western United States than in the eastern United States. Human-caused fires 486 

were associated with greater ERC (60 in the western and 34 in the eastern United States) 487 

than natural fires (56 in the western and 29 in the eastern United States). The minimum 488 

distance to the nearest road was much lower in the eastern than western United States, which 489 

is consistent with the East’s higher road density and percentage of human-caused fires. 490 

Minimum distance to road did not differ markedly between natural and human-caused fires 491 

(Figure 7b), which likely reflects a reporting bias. 492 

 493 

Figure 7. Boxplots of the Energy Release Component (ERC, fire danger index) (a) and 494 

minimum distance to the nearest road (b) associated with human-caused and natural fires in 495 

the eastern and western United States. 496 

 497 

The elevation and slope associated with natural fires were higher than those of fires ignited 498 

by human causes (Figures 8b,d). Natural fires also were associated with a lower population 499 

density, normalized difference vegetation index, and global human modification index than 500 
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fires ignited by human causes (Figures 8e-f). Differences in the overall social vulnerability 501 

and gross domestic product associated with the ignition locations of human-caused and 502 

natural fires were less noticeable (Figures 8a,c), partly driven by the spatial resolution of the 503 

source data (Table 1). 504 

 505 

Figure 8. Distribution of overall social vulnerability index (a), elevation (b), gross domestic 506 

product (c), slope (d), global human modification index (e), population density (f), and 507 

normalized difference vegetation index (g; one day prior to ignition date) for fires ignited by 508 

natural and human causes. 509 
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 510 

4. Discussion 511 

Critical analysis of past fire occurrences and assessment of the success of prevention and 512 

mitigation strategies are key for improving fire planning, response, adaptation, and 513 

mitigation (Show and Kotok, 1923; Short, 2014). Improved understanding of the causes and 514 

impacts of fires is needed to prioritize cost-effective mitigation and limit adverse fire impacts 515 

(Barros et al., 2021; Houtman et al., 2013; Santos et al., 2023). Scientific advances in support 516 

of fire management require comprehensive, easily accessible data that harmonize fire 517 

occurrence data with potential covariates, causal factors, and associated impacts. 518 

Importantly, by integrating variables that represent a range of biological, physical, and social 519 

factors, the FPA FOD-Attributes dataset facilitates research that considers fire in the context 520 

of social-ecological-technological systems (Iglesias et al., 2022; Shuman et al., 2022). 521 

The FPA FOD-Attributes dataset includes 310 biological, physical, social, and administrative 522 

attributes associated with more than 2.3 million fire records from 1992-2020 across the 523 

United States. These attributes can be used for hypothesis testing and incorporation into 524 

artificial intelligence and machine learning models that explain drivers of past fires or project 525 

likelihoods or effects of future fires. The FPA FOD-Attributes dataset potentially could be 526 

integrated with satellite detection of fire starts. Satellites have been increasingly used to 527 

identify new fire starts, enabling rapid deployment of suppression resources (Weaver et al., 528 

2004; Chuvieco et al., 2020). Satellite detection could be compared with the FPA FOD-529 

Attributes dataset to identify ignitions with potential to become destructive, given the 530 

surrounding conditions. This information could help prioritize the deployment of limited 531 

suppression resources (Roberto Barbosa et al., 2010; Mazzeo et al., 2022). The FPA FOD-532 

Attributes dataset also could be used in collaborative planning of forest restoration or fuel 533 

treatments. In cases where ideas about prioritization of resources and assets for fire 534 

prevention efforts conflict (Butler et al., 2015), robust scientific data such as the FPA FOD-535 

Attribute dataset can help facilitate a consensus (Colavito, 2017). 536 

A rigorous quality assurance and quality check process was applied to the original FPA FOD 537 

dataset, but some uncertainties remain. For example, some smaller fires are overseen by local 538 

jurisdictions that may not have reporting standards as strict as those of federal firefighting 539 

agencies (Short, 2014). It is therefore possible that smaller fires may be underreported in the 540 

FPA FOD. The quality assurance process checks for duplicate fire records, but it is possible 541 

that some duplicates remain due to the potential for multiple responding agencies to record 542 

different information on the same fire. There is also uncertainty associated with reported 543 

ignition locations. As a prerequisite for inclusion in the FPA FOD, a fire record’s geographic 544 

location must be at least as precise as a Public Land Survey System section, which covers 545 

one square mile. In addition, the locations of many smaller fires overseen by local 546 

jurisdictions may reflect the reporting location rather than the ignition location. For a full 547 

description of the fire selection process for the FPA FOD and potential uncertainty, see 548 

(Short, 2014). The FPA FOD-Attributes dataset does not provide details about large fire 549 
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growth days that may have occurred days to weeks from the ignition date, and interested 550 

readers are encouraged to pair this dataset with the “all-hazards dataset” of (St. Denis et al., 551 

2023) for studies that focus on fire growth rates and intense fire behavior. Furthermore, the 552 

current version of FPA FOD-Attributes dataset does not directly support analysis of 553 

secondary fire impacts such as wildfire emissions and smoke that impact downwind 554 

communities (Fowler et al., 2019). 555 

Human ignition processes and wildfire impacts are prime areas for extensive new research, 556 

and the FPA FOD-Attributes dataset is an initial effort to facilitate such knowledge 557 

development. The FPA FOD-Attributes dataset also merits refinements and additions that 558 

would further enhance its utility. For example, some of the socioeconomic variables (GDP, 559 

population) are based on coarse scale information gathered through international efforts, and 560 

using finer scale data may enhance the accuracy of the fire attributes. Additional economic 561 

data to include in future versions may cover personal income and the workforce, also 562 

available at sub-state levels from the Department of Commerce. Refined and expanded data 563 

could allow for more direct inferences that connect human-caused ignition processes to fire 564 

activity (e.g., Prestemon and Butry, 2005; Aldersley et al., 2011; Abt et al., 2015). 565 

Although the entire FPA FOD-Attributes dataset is available in CSV format, the file is large 566 

(over 4 GB). Therefore, advanced computing resources are necessary to work with the data. 567 

To obtain a data file that is a more manageable size, the dataset can be filtered by attributes, 568 

time period, or locations from the web portal (https://fpafod.boisestate.edu/) prior to 569 

downloading. 570 

 571 

Data availability 572 

The FPA FOD-Attributes dataset, for 1992-2020 and for individual years, is available 573 

through https://zenodo.org/record/8381129 (DOI: 10.5281/zenodo.8381129) (Pourmohamad 574 

et al. 2023) 575 

The FPA FOD-Attributes dataset can be visualized and downloaded through 576 

https://fpafod.boisestate.edu  577 

Source data used to develop FPA FOD-Attributes are listed in Table S1. 578 

 579 

Code availability 580 

All codes that compiled FPA FOD-Attributes were developed in python and are available 581 

through the FPA FOD-Attributes Github repository: 582 

https://github.com/YavarPourmohamad/FPA-FOD.git 583 
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